Возрастание и убывание функций

Определения

1) Функция y=f(x) называется возрастающей на некотором промежутке, если  бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

То есть для любых двух значений x1,x2 из этого промежутка выполняется условие

    \[ x_2 > x_1 \Rightarrow f(x_2 ) > f(x_1 ). \]

2) Функция y=f(x) называется убывающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует меньшее значение функции.

То есть для любых двух значений x1,x2 из этого промежутка выполняется условие

    \[ x_2 > x_1 \Rightarrow f(x_2 ) < f(x_1 ). \]

Предполагается, что промежуток принадлежит области определения функции y=f(x). Обычно промежуток — это отрезок, интервал или полуинтервал.

График функции на промежутках возрастания «идёт вверх» (чем правее x, тем выше y).

На промежутках убывания график «идёт вниз» (чем правее x, тем ниже y).

Пример 1.

Пользуясь графиком, найти промежутки возрастания и убывания функции y=f(x), определённой на отрезке [x1;x5]:

vozrastanie-i-ubyvanie-funkcii

Функция y=f(x) возрастает на промежутках [x2;x3] и [x4;x5]

Функция y=f(x) убывает на промежутках [x1;x2] и [x3;x4].

Кратко это записывают так:

    \[ f(x) \nearrow npu\_x \in \left[ {x_2 ;x_3 } \right]u\left[ {x_4 ;x_5 } \right], \]

    \[ f(x) \searrow npu\_x \in \left[ {x_1 ;x_2 } \right]u\left[ {x_3 ;x_4 } \right]. \]

3) Функцию, возрастающую на промежутке либо убывающую на промежутке, называют монотонной функцией на этом промежутке (или строго монотонной).

4) Если функция возрастает на всей своей области определения, то её называют возрастающей.

Если функция убывает на всей своей области определения, то её называют убывающей.

Например, y=√x, y=x³ — возрастающие функции.

Линейная функция y=kx+b возрастающая при k>0 и убывающая при k<0.

 

5) Если для любых двух значений x1,x2 из некоторого промежутка выполняется условие

    \[ x_2 > x_1 \Rightarrow f(x_2 ) \ge f(x_1 ), \]

то функция y=f(x) называется неубывающей на этом промежутке.

6) Если для любых двух значений x1,x2 из некоторого промежутка выполняется условие

    \[ x_2 > x_1 \Rightarrow f(x_2 ) \le f(x_1 ), \]

то функция y=f(x) называется невозрастающей на этом промежутке.

7) Функцию, невозрастающую на промежутке либо неубывающую на промежутке, называют не строго монотонной функцией на этом промежутке.

Пример 2.

Пользуясь графиком, найти промежутки, на которых  функции y=g(x), определённая на отрезке [x1;x3], является невозрастающей и неубывающей:

neubyvayushchaya-funkciya

Функция y=g(x) является неубывающей на промежутке [x1;x2].

Функция y=g(x) является невозрастающей на промежутке [x2;x3].

 

Возрастание и убывание функции можно определять как с помощью графика, так и аналитически.

Как доказать, что функция возрастает или убывает, с помощью задающей эту функцию формулы?

Для этого при условии x2>x1 на промежутке надо доказать выполнение одного из неравенств: f(x2)>f(x1) либо f(x2)>f(x1), то есть определить f(x2)-f(x1)>0 или f(x2)-f(x1)<0.

Примеры.

1) Доказать, что функция f(x)=x²+4x убывает на промежутке (-∞;-2).

Доказательство:

Функция определена на всей числовой прямой.

Пусть x2>x1.

f(x1)=x1²+4x1, f(x2)=x2²+4x2,

f(x2)-f(x1)=(x2²+4x2)-(x1²+4x1)=x2²+4x2-x1²-4x1=

группирует первое слагаемое с третьим, второе — с четвертым. В первых скобках — разность квадратов, из вторых выносим общий множитель 4 за скобки:

=(x2²-x1²)+(4x2-4x1)=(x2-x1)(x2+x1)+4(x2-x1)=

Теперь выносим общий множитель (x2-x1) за скобки:

=(x2-x1)(x2+x1+4).

Так как x2>x1, то x2-x1>0. Следовательно, знак произведения зависит от знака второго множителя.

Для x1, x2 ∈(-∞;-2) x2+x1+4<0. Значит, (x2-x1)(x2+x1+4)<0 и f(x2)<f(x1). Отсюда следует, что функция функция f(x)=x²+4x убывает на промежутке (-∞;-2).

Что и требовалось доказать.

2) Доказать, что функция

    \[ y = \frac{4}{{2 - x}} \]

возрастает на промежутке (2;+∞).

Доказательство:

Функция определена при x∈(-∞;2) и (2;+∞).

Пусть x2>x1.

    \[ y(x_2 ) - y(x_1 ) = \frac{{4^{\backslash (2 - x_1 )} }}{{2 - x_2 }} - \frac{{4^{\backslash (2 - x_2 )} }}{{2 - x_1 }} = \]

    \[ = \frac{{4(2 - x_1 ) - 4(2 - x_2 )}}{{(2 - x_1 )(2 - x_2 )}} = \frac{{4(x_2 - x_1 )}}{{(2 - x_1 )(2 - x_2 )}}. \]

Так как x2>x1, то x2-x1>0.

Для x1, x2 ∈ (2;+∞) (2-x1)(2-x2)>0. Значит,

    \[ \frac{{4(x_2 - x_1 )}}{{(2 - x_1 )(2 - x_2 )}} > 0. \]

Отсюда y(x2)-y(x1)>0. Поэтому данная функция возрастает на промежутке (2;+∞).

Что и требовалось доказать.

 

Исследование функции на монотонность гораздо удобнее проводить с помощью производной  (начала математического анализа — производную и её применение —  проходят в школьном курсе алгебры в 10-11 классах).

       

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *