Сокращение алгебраических (рациональных) дробей основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.
Сокращать можно только множители!
Члены многочленов сокращать нельзя!
Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе, нужно предварительно разложить на множители.
Рассмотрим примеры сокращения дробей.
В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.
Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36 это — 12. После сокращения от 24 остается 2, от 36 — 3.
Степени сокращаем на степень с наименьшим показателем. Сократить дробь — значит, разделить числитель и знаменатель на один и тот же делитель, а при делении степеней показатели вычитаем.
a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.
b и b сокращаем на b, полученные в результате единицы не пишем.
c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ — единица (ее не пишем). Таким образом,
Числитель и знаменатель данной алгебраической дроби — многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо многочлены разложить на множители. В числителе есть общий множитель 4x. Выносим его за скобки:
И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе — 1. По 1 свойству алгебраических дробей, дробь равна 4x.
Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.
В числителе — полный квадрат суммы, в знаменателе — разность квадратов. После разложения по формулам сокращенного умножения получаем:
Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):
В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе — формула разности кубов:
В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:
Многочлен в числителе состоит из 4 слагаемых. Группируем первое слагаемое со вторым, третье — с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:
В числителе вынесем за скобки общий множитель (x+2):
Сокращаем дробь на (x+2):
Сокращать можем только множители! Чтобы сократить данную дробь, нужно стоящие в числителе и знаменателе многочлены разложить на множители. В числителе общий множитель a³, в знаменателе — a⁵. Вынесем их за скобки:
Множители — степени с одинаковым основанием a³ и a⁵ — сокращаем на a³. От a³ остается 1, мы ее не пишем, от a⁵ остается a². В числителе выражение в скобках можно разложить как разность квадратов:
Сокращаем дробь на общий делитель (1+a):
А как сокращать дроби вида
в которых стоящие в числителе и знаменателе выражения отличаются только знаками?
Примеры сокращения таких дробей мы рассмотрим в следующий раз.
2 комментария
Очень хороший сайт,каждый день им пользуюсь, и помогает.
До того как я наткнулся на этот сайт,я не умел многое решать по алгебре, геометрии,но благодаря этому сайту мои оценки а 3 поднялись на 4-5.
Теперь я могу смело сдавать ОГЭ,и нн боятся что его не сдам!
Учитесь,и у Вас все получится!
Витя, желаю Вам успехов в учебе и высоких результатов на экзаменах!