Определение
Квадратное уравнение — это уравнение вида
где a, b, c — числа, причём a ≠ 0.
Если коэффициенты b и c отличны от нуля, квадратное уравнение называется полным.
Если b или c или оба коэффициента равны нулю, квадратное уравнение называется неполным.
Решение полного квадратного уравнения
Количество корней полного квадратного уравнения зависит от значения дискриминанта.
Дискриминант — это число, вычисляемое по формуле
1) Если D>0, квадратное уравнение имеет два корня, которые находят по формуле
2) Если D=0, квадратное уравнение имеет один корень, который находят по формуле
3) Если D<0, квадратное уравнение не имеет корней в действительных числах.
Решение неполных квадратных уравнений
1) Если c=0
Общий множитель x выносим за скобки
Это уравнение типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:
или
откуда
Таким образом, при c=0 квадратное уравнение имеет два корня, один из которых равен нулю, второй — -b/a.
2) Если b=0
Если знаки a и с разные (например, a>0, c<0), левую часть уравнения можно разложить по формуле разности квадратов
Это уравнение — типа «произведение равно нулю». Приравниваем к нулю каждый из множителей:
или
Отсюда
Если -a<0, c>0, обе части уравнения делим на -a
и получаем то же уравнение
Если знаки a и c одинаковые, уравнение не имеет решений.
Если a>0, c>0, то, так как x² — неотрицательное, то ax²≥0 (на самом деле, здесь ax²>0) . Сумма положительных чисел не может равняться нулю, поэтому это уравнение не имеет корней.
Если a<0, c<0, то ax²≤0 (в примерах этого вида ax²<0). Сумма отрицательных чисел не может равняться нулю.
В дальнейшем обычно решают короче:
или
корней нет.
Таким образом, при b=0 квадратное уравнение либо имеет два корня, которые отличаются только знаками (то есть являются противоположными числами), либо не имеет действительных корней.
3) Если b=0 и c=0
Это уравнение имеет один корень x=0.
Итак, квадратное уравнение может иметь два корня, один корень либо не иметь ни одного корня.
В некоторых источниках один корень рассматривается как два одинаковых корня:
Такие корни называются кратными (второй степени).
В следующий раз для удобства использования запишем виды квадратных уравнений и способы их решения в виде схемы.
Затем рассмотрим примеры решения квадратных уравнений различных видов.
2 комментария
Здравствуйте! А как разбирать случаи когда а и б == 0,
а именно как по с определить кол-во корней ?
Уравнение — это равенство, содержащее переменную, значение которой нужно найти. Если a=0 и b=0, получится равенство, которое не является уравнением. По определению, в квадратном уравнении a≠0.