Дискриминант, делённый на 4 — D/4 — удобно использовать для упрощения вычислений при решении квадратных уравнений, если коэффициент b при x — чётное число.
Формула дискриминанта, деленного на 4 —
Как и для случая с обычным дискриминантом, количество корней квадратного уравнения зависит от знака D/4.
- Если D/4>0, квадратное уравнение имеет два корня:
- Если D/4=0, квадратное уравнение имеет один корень
- Если D/4<0, квадратное уравнение не имеет действительных корней.
Рассмотрим примеры решения квадратных уравнений с помощью формулы четверти дискриминанта.
Так как b=16 — чётное число, вместо обычного дискриминанта вычислим дискриминант, делённый на 4 (иногда его еще обозначают через D1):
Так как D/4>0, уравнение имеет два корня:
Ответ: -0,2; -3.
Поскольку D/4>0, уравнение имеет два корня:
Ответ: 9; 1/3.
Так как D/4=0, данное квадратное уравнение имеет один корень
Ответ: -2 1/3.
Так как D/4<0, уравнение не имеет корней в действительных числах.
Ответ: нет корней.
Для решения квадратных уравнений вполне достаточно помнить обычную формулу дискриминанта и связанные с ним формулы корней. И все же, дополнительное знание формулы четверти дискриминанта не будет лишним.
Во-первых, с меньшими (по модулю) числами проще работать. Во-вторых, эта формула иногда ускоряет процесс нахождения корней уравнения.
Если находить корни через формулу обычного дискриминанта, придётся раскладывать его на множители, выносить множитель из-под корня, затем общий множитель — за скобки и сокращать дробь.
Ответ: