Что такое линейное уравнение? Что называется корнем линейного уравнения? Сколько корней имеет линейное уравнение? Что значить решить линейное уравнение?
В курсе алгебры 7 класса линейное уравнение определяется следующим образом.
Определение.
Линейное уравнение с одной переменной — это уравнение вида ax=b, где a и b — числа, x — переменная.
Корнем линейного уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство.
Например, корень уравнения 5x=40 равен 8, так как при x=8 это уравнение превращается в верное числовое равенство:
5∙8=40
40=40.
Количество корней линейного уравнения зависит от значения a (коэффициента перед x).
При a≠0 линейное уравнение имеет единственное решение.
Чтобы найти x, обе части уравнения нужно разделить на число, стоящее перед иксом:
Любое число можно разделить на 2, 5 и числа, которые могут быть представлены в виде произведения только двоек и пятёрок ( например, любое число можно разделить на 10, так как 10=2∙5; на 40, так как 40=2∙2∙2∙5).
В остальных случаях ответ записывают в виде обыкновенной дроби (если дробь неправильная, следует выделить из нее целую часть).
При a=0, b≠0 линейное уравнение
не имеет решений.
При любом значении x левая часть уравнения равна нулю, а правая — отлична от нуля. То есть нет ни одного значения x, при котором уравнение обратилось бы в верное числовое равенство.
При a=0, b=0 линейное уравнение
имеет бесконечное множество решений.
При любом значении x левая часть уравнения 0x=0 обращается в нуль, в правой части также стоит нуль. Значит, любое число является корнем этого уравнения, то есть, при любом значении x это уравнение обращается в верное числовое равенство.
Возможные решения линейных уравнений можно изобразить в виде схемы.
Решить линейное уравнение — значит, найти корень (корни) уравнения, либо убедиться, что уравнение не имеет корней.
Решение многих уравнений сводится к решению линейных уравнений.
5 комментариев
Спасибо огромное!!!! очень помогли))) все понятно и доступно написано! СПАСИБО!
Спасибо! Всё очень доступно и понятно.
🙂
Мало действительно полезной информации по конкретной теме.А если искать тему для презентаций так вообще сюда не захожу.
Моя задача — помочь ученикам в усвоении материала. Извините, но в презентациях не вижу никакой практической пользы.